Search results for "KdV equation"

showing 6 items of 6 documents

From particular polynomials to rational solutions to the mKdV equation

2022

Rational solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of determinants involving certain particular polynomials. This gives a very efficient method to construct solutions. We construct very easily explicit expressions of these rational solutions for the first orders n = 1 until 10.

47.35.Fg47.10A-rational solutions PACS numbers : 33Q5547.54.Bd37K10[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]mKdV equation
researchProduct

Multi-parameters rational solutions to the mKdV equation

2021

N-order solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of two wronskians of order N depending on 2N real parameters. When one of these parameters goes to 0, we succeed to get for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2N real parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 6.

47.35.FgNonlinear Sciences::Exactly Solvable and Integrable Systemswronskians47.10A-rational solutions PACS numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]47.54.Bd[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K10mKdV equation
researchProduct

Rational solutions to the KdV equation depending on multi-parameters

2021

We construct multi-parametric rational solutions to the KdV equation. For this, we use solutions in terms of exponentials depending on several parameters and take a limit when one of these parameters goes to 0. Here we present degenerate rational solutions and give a result without the presence of a limit as a quotient of polynomials depending on 3N parameters. We give the explicit expressions of some of these rational solutions.

KdV equation47.35.Fg47.10A-rational solutions PACS numbers : 33Q55[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]47.54.Bd[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]37K10
researchProduct

Degenerate Riemann theta functions, Fredholm and wronskian representations of the solutions to the KdV equation and the degenerate rational case

2021

International audience; We degenerate the finite gap solutions of the KdV equation from the general formulation given in terms of abelian functions when the gaps tend to points, to get solutions to the KdV equation given in terms of Fredholm determinants and wronskians. For this we establish a link between Riemann theta functions, Fredholm determinants and wronskians. This gives the bridge between the algebro-geometric approach and the Darboux dressing method.We construct also multi-parametric degenerate rational solutions of this equation.

KdV equationPure mathematicsGeneral Physics and AstronomyFredholm determinantTheta function01 natural sciencessymbols.namesakeWronskians[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Fredholm determinant0103 physical sciencesRiemann theta functions0101 mathematicsAbelian group010306 general physicsKorteweg–de Vries equationMathematical PhysicsMathematicsWronskianRiemann surface010102 general mathematicsDegenerate energy levelsRiemann hypothesisNonlinear Sciences::Exactly Solvable and Integrable SystemsRiemann surfacesymbolsGeometry and Topology
researchProduct

Rational solutions to the mKdV equation associated to particular polynomials

2021

International audience; Rational solutions to the modified Korteweg-de Vries (mKdV) equation are given in terms of a quotient of determinants involving certain particular polynomials. This gives a very efficient method to construct solutions. We construct very easily explicit expressions of these rational solutions for the first orders n = 1 until 10.

[PHYS]Physics [physics][SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Pure mathematicsApplied MathematicsRational solutionsMathematics::Analysis of PDEsGeneral Physics and Astronomy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]01 natural sciences010305 fluids & plasmasComputational MathematicsNonlinear Sciences::Exactly Solvable and Integrable SystemsModeling and Simulation0103 physical sciences010306 general physicsConstruct (philosophy)mKdV equationNonlinear Sciences::Pattern Formation and SolitonsQuotientMathematicsWave Motion
researchProduct

The mKdV equation and multi-parameters rational solutions

2021

Abstract N -order solutions to the modified Korteweg–de Vries (mKdV) equation are given in terms of a quotient of two wronskians of order N depending on 2 N real parameters. When one of these parameters goes to 0, we succeed to get for each positive integer N , rational solutions as a quotient of polynomials in x and t depending on 2 N real parameters. We construct explicit expressions of these rational solutions for orders N = 1 until N = 6 .

[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS]Physics [physics]Pure mathematicsApplied MathematicsRational solutionsGeneral Physics and Astronomy[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]01 natural sciences010305 fluids & plasmasComputational MathematicsNonlinear Sciences::Exactly Solvable and Integrable SystemsIntegerWronskiansModeling and Simulation0103 physical sciencesOrder (group theory)mKdV equation010301 acousticsQuotientMathematicsWave Motion
researchProduct